Part Number:MSP430F5529
I am trying to capture 1k samples from an analog accelerometer using ADC and store them in an array for further processing and sending through mqtt afterwards. I am a beginner in this and tried a lot of ways including using timer but wasn't successful. So I finally came up with the following code that works, but I would like to know if this is a good approach.
The code is as follows: I have setup the ADC using ACLK clock
static void setup_ADC(void){
ADC12CTL0 = ADC12SHT02 + ADC12ON; // Sampling time, ADC12 on
ADC12CTL1 = ADC12SHP + ADC12SSEL_1; // Use sampling timer; Pulse Sample Mode; ADC12SHT02 decides the interval of the sampling timer
// ACLK (32.768 kHz) selected as the clock source
ADC12IE = 0x01; // Enable interrupt
ADC12CTL0 |= ADC12ENC;
P6SEL |= 0x01; // P6.0 ADC option select
}
The infinite while loop in main has an mqtt function that should run after 1000 samples have been stored.
while(1){
/* Signal processing and communication only to be done after collecting 1K samples */
if (SamplesDone){
/* Send the values through mqtt */
mqtt();
samples_count = 0;
}
ADC12CTL0 |= ADC12SC; // Start sampling/conversion
__bis_SR_register(LPM0_bits + GIE); // LPM0, ADC12_ISR will force exit
__no_operation(); // For debugger
}
In the ISR, I simply move the data into the array that can store upto 1000 elements
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = ADC12_VECTOR
__interrupt void ADC12_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(ADC12_VECTOR))) ADC12_ISR (void)
#else
#error Compiler not supported!
#endif
{
switch(__even_in_range(ADC12IV,34))
{
case 0: break; // Vector 0: No interrupt
case 2: break; // Vector 2: ADC overflow
case 4: break; // Vector 4: ADC timing overflow
case 6: // Vector 6: ADC12IFG0
adc_value = ADC12MEM0 & 0x0FFF; // keep only low 12 bits; Move results, IFG is cleared
adc_values[samples_count] = adc_value;
samples_count += 1;
/* Set the flag when 1000 samples are collected */
if (samples_count == 999) {
SamplesDone = 1;
}
__bic_SR_register_on_exit(LPM0_bits); // Exit active CPU
case 8: break; // Vector 8: ADC12IFG1
case 10: break; // Vector 10: ADC12IFG2
case 12: break; // Vector 12: ADC12IFG3
case 14: break; // Vector 14: ADC12IFG4
case 16: break; // Vector 16: ADC12IFG5
case 18: break; // Vector 18: ADC12IFG6
case 20: break; // Vector 20: ADC12IFG7
case 22: break; // Vector 22: ADC12IFG8
case 24: break; // Vector 24: ADC12IFG9
case 26: break; // Vector 26: ADC12IFG10
case 28: break; // Vector 28: ADC12IFG11
case 30: break; // Vector 30: ADC12IFG12
case 32: break; // Vector 32: ADC12IFG13
case 34: break; // Vector 34: ADC12IFG14
default: break;
}
}
I would be very thankful to any suggestions/comments on this approach.